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ABSTRACT. Social scientists frequently study causal questions with georeferenced data, wherein
observations correspond to areal units or coordinates. Empirical researchers frequently incor-
porate geographic information like any other covariate and risk producing biased estimates
by failing to flexibly incorporate the spatial dependence structure in unobserved confounders.
Motivated by the implication from Tobler’s first law of geography that units that are close
together in space are more comparable to each other on unobserved confounders, we pro-
pose a set of sufficient identification conditions such that unobserved spatial confounders
can be partialled out by conditioning flexibly on geographic location. This allows us to re-
purpose well-known estimators in the unconfoundedness literature that involve fitting the
outcome and propensity models using flexible nonparametric regressions of the outcome
and treatment on smooth functions of location and plugging them into a doubly-robust score
function to target the Average Treatment Effect (ATE) or regressing residuals on residuals
for an overlap-weighted Treatment Effect (OTE). We find that this semiparametric covariate
adjustment approach outperforms conventional covariate adjustment strategies and yields
unbiased and precise estimates in a wide variety of spatial confounding simulations, and
conclude with two empirical applications.

STANFORD UNIVERSITY, CA
E-mail address: apoorval@stanford.edu.
Date: May 22, 2023.

1

mailto:apoorval@stanford.edu


2 SEMIPARAMETRIC SPATIAL COVARIATE ADJUSTMENT

1. Introduction

Social scientists frequently attempt to study causal effects with geo-referenced data, wherein
observations either correspond to areal units, such as counties or districts, or spatial point
locations, such as residences, or event coordinates. In many such settings, the assignment
mechanism is unknown, but researchers have a loose intuition that closer units are more
comparable to each other along unobserved confounders, memorably articulated by Tobler
as “everything is related to everything else, but near things are more related than dis-
tant things” (Tobler, 1970). Accordingly, researchers frequently invoke unconfoundedness
‘conditional on geography’, thereby yielding a ‘Geographic Natural Experiment’(Keele and
Titiunik, 2016). Current practice in applied social science work treats location as just an-
other covariate, and therefore incorporates it highly parametrically (typically as a regressor
in a linear regression), or by restricting comparisons to within larger administrative units
by incorporating fixed-effects.

This paper proposes sufficient identification conditions such that unobserved spatial con-
founders can be partialled out by conditioning flexibly on geographic location in both a
partially linear or fully nonparametric potential outcomes framework. Next, we re-purpose
well-known estimators in the unconfoundedness literature that involve fitting the outcome
and propensity models using flexible nonparametric regressions of the outcome and treat-
ment on smooth functions of location, followed by regressing residuals outcomes on resid-
ual treatment in a partially linear model for an overlap-weighted Treatment Effect (OTE)
(Robinson, 1988), or plugging them into a doubly-robust score function to target the Av-
erage Treatment Effect (ATE) (J. M. Robins, Rotnitzky, and Zhao, 1994; Chernozhukov,
Chetverikov, Demirer, et al., 2018). This approach relies on a perturbation of the stan-
dard confounding directed acyclic graph (DAG) in fig 1a, wherein instead of adjusting for
an unobserved confounder U directly, the researcher adjusts for a proxy S, which is the
unit’s geographic location, which amounts to various forms of ‘local differencing’. Spatial
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smoothing is performed using nearest-neighbour smoothers1, Gaussian Markov Random
Field smoothers (Havard Rue and Held, 2005; Wood, 2006) for areal units, spline, kernel
sieve, and regularized kriging estimators for point-reference units (Cressie and Johannes-
son, 2008; E. L. Kang and Cressie, 2011), but in-principle is adaptable to any nonparametric
regression method. Inference can be performed using the Bayesian (weighted) bootstrap
(D. B. Rubin, 1981; Mason and Newton, 1992; Belloni et al., 2017).

Finally, we conduct simulation studies with spatial confounding and varying degrees of
smoothness and find that semiparametric adjustment yields substantially more unbiased
and precise estimates relative to conventional strategies. In particular, we find that for
smooth to moderate confounding, partialling out estimators yield unbiased estimates, while
when confounding is very noisy, they yield biased estimates like all other strategies, but their
bias is the smallest among all estimators considered.

The current paper contributes to linking modern causal inference with spatial statistics and
spatial econometrics. The standard approach in spatial statistics and applied work public
health is fit random-effects or kriging estimators that allow for spatial correlation in the
random effects but are assumed to be orthogonal to the treatment by construction (Chris-
tensen, 2001; Cressie, 2015; Blangiardo and Cameletti, 2015), thereby typically assuming
away confounders and potentially drawing incorrect inferences. This approach invokes fig-
ure 1b, where U only affects Y and therefore naive OLS estimates are inefficient but not
biased. However, in most social scientific settings, this is an unrealistic assumption, since
unobserved confounders are often correlated with both the treatment and the outcome
(1a). In early work in this area, Paciorek (2010) analyses the importance of the scale of
unobserved confounders versus the treatment on bias and precision of estimates, which
can be interpreted as an overlap condition in causal methods. Recent work in statistics and
biostatistics has made attempts to bridge the two literatures: Schnell and Papadogeorgou

1Also known as Spatial Autoregressive Models in the spatial econometrics literature,(H. H. Kelejian and Prucha,
2010)
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FIGURE 1. Directed-Acyclic Graphs of Spatial Confounding. Y is the outcome,
W is the treatment, U is an unobserved confounder, and S is the location

(2020) connect the mixed-models approach and provide identification conditions for con-
tinuous exposures, while Gilbert, Datta, and Ogburn (2021) adapt double-machine learning
for continuous treatments. Spatial econometric methods, on the other hand, explicitly fo-
cus on studying interference and decomposing effects into ‘direct’ and ‘indirect’ components
(H. H. Kelejian and Prucha, 1999; H. H. Kelejian and Prucha, 2010), which is a separate
and considerably more challenging exercise that has also been the focus of considerable
recent interest (Sävje, Aronow, and Hudgens, 2021; Hu, S. Li, and Wager, 2021). Con-
temporary causal inference methods in econometrics and political methodology literature
thus far treats location as a regular covariate as part of a selection-on-observables design
Keele and Titiunik (2016) and Baum-Snow and Ferreira (2015), or focus on narrower as-
signment mechanisms, such geographic regression discontinuity (G. W. Imbens and Zajonc,
2009; Dell, 2010; Keele and Titiunik, 2015; G. W. Imbens and Wager, 2019)).
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The rest of the paper is organised as follows: section 2 introduces themethodology, 3 reports
results from a set of simulation studies benchmarking the semiparametric estimators against
those commonly used in applied research, 4 illustrates the use of semiparametric estimators
on two empirical examples, and section 5 concludes.

2. Model

The data D := {Di}Ni=1 := {Yi,Wi, Si}Ni=1 where each observation Di is comprised of an
outcome Yi ∈ R, a binary treatment Wi ∈ {0, 1}, and spatial location Si ∈ S. Location
Si is either areal data, such as districts, where units are located on an irregular lattice S

(i.e. a map of administrative units), and point data, where each point possesses a location
(latitude and longitude) s ∈ S ⊆ R2. Each observation also has unobserved confounder
Ui ∈ R associated with it, which is correlated with both the outcome Yi and Wi, thereby
making naive comparisons biased for the causal effect ofW on Y . We may also have access
to other covariates Vi, but will suppress them for notational convenience and without loss of
generality work with partialled out outcome and treatment2. The outcome is generated as
Yi = WiY

1
i −(1−Wi)Y

0
i , where Y 1, Y 0 correspond with potential outcomes under treatment

and control respectively. This switching equation representation rules out cross-sectional
interference wherein a unit’s treatment status affects another unit’s outcome.

2.1. Identification Assumptions. The first two assumptions stipulate that the stan-
dard unconfoundedness and overlap assumptions hold conditional on U . The latter two
assumptions stipulate that the unobserved confounder can be learned from the observed
location data for areal and point-referenced data respectively. These are related to condi-
tions set out for the continuous-exposure setting analysed by Schnell and Papadogeorgou
(2020) and Gilbert, Datta, and Ogburn (2021).

2The precise nature of the partialling out can be arbitrarily flexible, and for some estimators additional co-
variates Vi can be included alongside location Si in semiparametric estimators.
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A1. Causal Consistency: Yi = Yi(Wi). A unit’s outcome is generated by its own treatment
status alone.

A2. Latent Unconfoundedness: Yi(Wi) ⊥⊥ Wi|Ui.

A3. Positivity: Pr (W = 1|U) ∈ (0, 1)

The above assumptions assert the standard selection-on-observables assumptions of treat-
ment ignorability and positivity conditional on the unobserved confounder U .

A4. Learnability of U : U = g(S) for a fixed, measurable function g(·).

This is an smoothness assumption that requires that the confounder be ‘nearly continuous’
function of location. This rules out sharp jumps in the level of the unobserved confounder
U such that a smoothing method used to estimate g() will fail to pick it up. While this is
untestable and therefore fails to guarantee that simply conditioning on location will elimi-
nate all bias in all cases, is typically the case that conditioning on location flexibly even in
cases where U is very noisy will yield less biased estimates than parametric or no adjustment
(sec 3).

A5. Conditioning on S doesn’t induce confounding: Yi(wi) ⊥⊥ Wi|Si, Ui. This requires
that additionally conditioning on location S does not induce confounding, i.e. location is
not a collider.

Proposition 2.1 (Unconfoundedness given location).

Assumptions A4 and A5 imply

Y (w) ⊥⊥ W |S

Proof in appdx A.1. Informally, this characterises when conditioning on S as a proxy for the
spatial confounder U suffices for unconfoundedness.
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Finally, to proceed with estimation, we also need the amended overlap assumption

A6. Positivity: Pr (W = 1|S) ∈ (0, 1)

This stipulates that the probability of treatment is non-zero everywhere in S. If the estimand
of interest is the Average Treatment effect on the Treated (ATT) E [Y 1 − Y 0|W = 1], this can
be weakened to Pr (W = 1|S) < 1.

Proposition 2.2 (Identification of Counterfactual mean).

Given assumptions 1:6, We can identify counterfactual mean E
[
Y (w)

]
from the observed

data.

E
[
Y (w)

]
= E [Y |W = w, S = s] dP (S)

Proof in appendix A.2. Proposition 2.2 allows us to proceed with the standard suite of es-
timators for selection on observables, where now the ‘observable’ is location, which is used
as a proxy for the confounder. Since the independence statement Y (w) ⊥⊥ W |S is a non-
parametric identification result, this alone does not motivate a specific estimation strategy,
and substantive knowledge motivates the choice of partially linear regression, matching,
weighting, or hybrid approaches. We turn to estimation next.

2.2. Partially Linear Regression Estimator. In the partially linear model (PLM),
we stipulate that the outcome is generated as a flexible function of the unobserved con-
founder m(U) plus an additive treatment effect.

Yi = τWi +m(Ui) + εi
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where Y 0 = m(Ui) and Y 1 = Y 0 + Wi · τ . Since U unobserved, the ‘long’ regression is
infeasible, and therefore the regression coefficient τ is generically biased. The ‘short’ re-
gression estimate of τ̂ s suffers from omitted variables bias E [τ − τ̂ s] =

(
X⊤X

)−1 X⊤E [U |X],
where Xi = (1,Wi). E [U |X] ̸= 0 whenever the treatment correlated with unobserved con-
founders. This means standard approaches unconfoundedness approaches fail to yield con-
sistent estimates of τ . However, since Si is available, and we have established conditions
for identifications in sec 2.1, we can write the following partially linear regression instead

Yi = τWi + g(Si) + εi (2.1)

Robinson (1988) establishes that equation 2.1 can equivalently be represented as

(Yi − E [Yi|Si]︸ ︷︷ ︸
m(si)

) = τ · (Wi − E [Wi|Si]︸ ︷︷ ︸
e(si)

) + εi (2.2)

where the outcome model m(si) := E [Yi|Si] and treatment model e(si) := E [Wi|Si] are
estimated non-parametrically. Robinson (1988) shows that √n− consistent estimation of τ
is possible using the residuals on residuals regression 2.2.

Robinson advocates the use of kernel-regressions with higher-order kernels, which severely
limited the practical application of this result. Higher order kernels use negative weights
that complicate interpretation, its bandwidth is difficult to tune in realistic data settings
struggles in the presence of high dimensional covariates (if si contains additional covari-
ates). However, this approach has been rejuvenated by recent work on ‘double machine
learning’(Chernozhukov, Chetverikov, Demirer, et al., 2018), where the nonparametric re-
gressions are fit with generic learners with sufficiently fast rate of convergence for the es-
timation errors in m(·) and e(·) cancel out. Popular machine learning regressions such
as boosted trees, random forests, or tailored neural networks perform well in this setting
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(Chernozhukov, Chetverikov, Demirer, et al., 2018). We outline three methods for fitting
spatial non-parametric regressions below, but emphasise that any curve-fitting method that
can be tailored for spatial predictions can be used in the first step. This then results in the
following estimator

Defn 2.1 (Partially Linear Regression Coefficient).

The linear regression 2.2 of residuals on residuals estimates the following Partially linear
regression coefficient

τ̂ PLR =

∑n
i=1(Yi − m̂(si))(Wi − ê(si))∑n

i=1 (Wi − ê(si))
2

This is consistent for the constant treatment effect in regression 2.1. Proof in Chernozhukov,
Chetverikov, Demirer, et al. (2018, Thm 4.1), which employs the corresponding Neyman-
orthogonal score function ψ(Di, τ, η) = (Y −Wτ −m(S))(W − e(S)) where η = (m(·), e(·))

collates the nuisance functions.

Under treatment effect heterogeneity, we can write the potential-outcome models Y 0 =

m(Si) and Y 1 = Y 0+Wτ(S), which can be combined into the outcome model Yi = m(si)+

Wτ(S) + εi where τ(S) is the treatment effect function as S varies. In the presence of
such heterogeneity, it is well known that the partially linear regression coefficient τ̂ PLR isn’t
consistent for the average treatment effect E

[
Y (1) − Y (0)

]
. Instead, the partially linear

regression coefficient estimates a conditional-variance weighted average of strata-specific
treatment effects (Angrist, 1998; Aronow and Samii, 2016), which may be substantially
different from the ATE or ATT. However, ‘moving the goalposts’ to an overlap-weighted effect
is often argued to be reasonable in the presence of potential overlap violations (Crump et
al., 2009; J. Robins et al., 2008). Specifically, τ̂ from the residuals on residuals regression
is consistent for the a non-negative weighted average of the conditional average treatment
effect function τ(S), which focuses on parts of the feature space with reasonable overlap,
i.e. where e(·) is closest to 0.5.
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Proposition 2.3 (Consistency of the Partially Linear Regression Coefficient Convex-weighted

average of Conditional Average Treatment Effects).

τ̂ PLR is consistent for the following overlap-weighted estimand in the presence of effect het-
erogeneity

τ̂ PLR
p→ τATO = E

[
e(si)(1− e(si))

E [e(si)(1− e(si))]
τ(S)

]

Proof in A.3. This result validates the use of partially linear regression to estimate the
treatment effect when effect heterogeneity is minimal, and a convex-weighted average of
heterogeneous treatment effects when effects are heterogeneous (but overlap may be chal-
lenging for certain values of S). We revisit the latter point in the inference section 2.4.

Next, we outline two spatial regression/smoothing techniques to fit m and e that perform
well with spatial data.

2.2.1. Nearest-Neighbours Differencing. The first approach is arguably themost straight-
forward, where location information is used solely to construct the adjacency matrix. This
corresponds to the nonparametric regression estimator where the conditional expectation
of X at location i is the average of the neighbouring units’ value of X. Since location is rel-
atively low-dimensional (k = 2 or k = 3) and is naturally ordered, constructing the nearest
neighbours estimate / spatial lag relies on pre-multiplying by a weight matrix W, where

wij =


1/ |Ni| if j ∈ Ni

0 otherwise

where Ni is the set of i’s neighbours. The normalisation by the number of neighbours
ensures that the spatial lag is the average of all neighbouring units’ values. Neighbours



SEMIPARAMETRIC SPATIAL COVARIATE ADJUSTMENT 11

may be defined based on substantive knowledge of the problem, but are typically defined
to be ‘queen’ neighbours (where common edges or vertices qualify i to be j’s neighbour and
vice versa) (H. Kelejian and Piras, 2017).

This leads to the following outcome and propensity models for unit i

m(si) =
∑
j∈Ni

ωijYj ; e(si) =
∑
j∈Ni

ωijWj

Letting Ã denote spatial lags for a random variable A, the partial linear regression 2.2 can
now be written as

(Yi − Ỹi) = τ(Wi − W̃i) +

g(S) + g(S + ε)→ 0︷ ︸︸ ︷
Ui − Ũi +ηi

This approach consistently estimates τ as long as U is sufficiently smooth that local differ-
encing eliminates it from the regression, thereby obviating the need to estimate g(·) at all.
Intuitively, as long as the confounder is smooth in space, its value will be locally constant,
and therefore its contribution can be differenced out by residualising on spatial lags. This is
related to the claim in Paciorek (2010), where he studies the bias of covariate estimates and
concludes that bias can be reduced by fitting a model when the spatial scale of the covariate
is smaller than that of the confounder. This approach is closely related to random forests
(in low/moderate dimensions), since the latter is an adaptive kernel/nearest-neighbours
estimator (Athey, Tibshirani, and Wager, 2019).

The local differencing approach is closely related to the ‘differencing’ estimator of Yatchew
(1997) adapted for spatial regressions by Druckenmiller and Hsiang (2018) as ‘spatial first
differences’. The differencing estimator requires regularly spaced lattices and requires
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that one proceed in one direction (say, north to south) at a time, and average over di-
rections. Yatchew shows that the differencing estimator is consistent and asymptotically
normal as long as the derivative of the semiparametric part g′(·) is bounded, with vari-
anceN

(
τ, 1.5σ2

η/Nσ
2
υ

)
, with σ2

η and σ2
υ denoting the conditional variances of Y |U andW |U

respectively. The convergence rate of the differencing estimator is 2
3
that of the Robinson

(1988) and Chernozhukov, Chetverikov, Demirer, et al. (2018) approach (which is √n con-
sistent), but on the other hand sidesteps the need to estimate the preliminary regressions
m(si), e(si).

With moderate-to-large quantities of data, the neighbourhood differencing is particularly
appealing as it sidesteps the need to estimate nuisance functions and instead can be com-
puted by simply differencing each observation’s treatment and outcome value on their cor-
responding spatial lags and subsequently estimating residuals on residuals regression.

2.2.2. Markov Random Field Models. The use of Markov Random Fields models for spa-
tial smoothing is motivated by a Bayesian prior that the truth is more likely to be smooth
than wiggly β̂ = argminβ ∥y− f(x)∥22+λJ(β). In conventional spline problems, this implies
a penalty term J(·) that penalises the second derivative f ′′(x). However, since areal units
are discrete and non-uniformly sized, the roughness penalty approach must be amended
for unit effects.

To this end, the spatial statistics literature uses a correlated random effects approach where
unit effects γj are assumed to be distributed as a Gaussian Markov Random Field (Havard
Rue and Held (2005) and Wood (2006), defined in appdx A.4). Letting Nj denotes the set
of neighbours of unit j, the penalty function can be written

J(γ) =
n∑

j=1

∑
i∈Nj ,i>j

(γj − γi)
2
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This ensures that unit effects for adjacent units are penalised to be close to each other. The
degree of regularization λ dictates the sparsity of this approximation through its precision
matrix. This approach can also be interpreted as a feasible implementation of Gaussian pro-
cess regression via Vechhia approximations (Vecchia, 1988; Cressie and Davidson, 1998).
MRFs can be fit using Regularised Maximum Likelihood or via Bayesian methods. In partic-
ular, the Integrated Nested Laplace Approximation (Lindgren, Håvard Rue, and Lindström,
2011) is tailored to fit MRFs and is widely used in the geostatistics literature to construct
basis representations for large Gaussian process models (E. L. Kang and Cressie, 2011;
Cressie and Johannesson, 2008).

To guard against over-fitting and guarantee √
n consistency, nuisance models m(·) and e(·)

need to be guard against own-observation bias, i.e. the model used to predict a given unit’s
value of m̂(si) should not be trained on observation i; this is typically performed using
‘cross-fitting’ by splitting the sample into K folds and predicting nuisance functions for
fold k using models m̂−k(·), ê−k(·) omitting fold k. The approach in the present paper is to
recognise that S is a spatial covariate, and use specialised nearest-neighbours smoothers to
fit E [Y |S] and E [W |S].

2.3. Fully Nonparametric Formulation. In the presence of treatment effect het-
erogeneity, the OLS coefficient τ from a partially linear regression uncovers a conditional-
variance weighted average of strata-specific treatment effects (Angrist, 1998) where units
with the highest conditional variance in treatment (i.e. propensity score e(S) ≈ 0.5) re-
ceive the highest weight, while units with more extreme propensity scores close to 0 or 1
receive low weight. In observational studies, this is often justified as the average effect for
observations for whom overlap might plausibly hold.

When effect heterogeneity is potentially high, however, one might want to use nonpara-
metric estimators that target the ATE directly. Many estimators exist for estimation under
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unconfoundedness including subclassification, weighting, matching, and regression impu-
tation (see G. W. Imbens (2004) for a review). We outline three estimators with attractive
properties in the spatial setting.

2.3.1. Augmented Inverse-Propensity Weighting Estimator. The Augmented inverse-
propensity weighting (AIPW) estimator is the most popular among hybrid methods that
combine modelling the two potential outcomes m0(si) := E [Y | Wi = 1, si = si] ,m

1(si) :=

E [Y |Wi = 0, si = si] and the propensity score e(si) := Pr (Wi = 1|si = si), which possesses
the desirable ‘double-robustness’ property that ensures consistency as long as either the out-
come model or propensity score are correctly estimated. J. M. Robins, Rotnitzky, and Zhao
(1994) proposed parametric models for nuisance functions, while recent work in double
machine learning (Chernozhukov, Chetverikov, Demirer, et al., 2018) and targeted ma-
chine learning Van Der Laan and D. Rubin (2006) allow the use of flexible nonparametric
estimators.

The augmented inverse-propensity weighting estimator (AIPW) is characterised by its effi-
cient score (Hahn, 1998). The uncentered score for the average treatment effect (ATE) and
average treatment effect on the treated (ATT) are

ξATEi = m̂1(si) +
Wi(Yi − m̂1(si))

ê(si)︸ ︷︷ ︸
Ê[Y (1)]

− m̂0(si) +
(1−Wi)(Yi − m̂0(si))

1− ê(si)︸ ︷︷ ︸
Ê[Y (0)]

ξATTi =
1

ρ̂

∑
i

WiYi︸ ︷︷ ︸
Ê[Y (1)|W=1]

− 1

ρ̂

∑
i

[
Wim̂

(0)(si)
]
+ (1−Wi)

ê(si)

1− ê(si)

{
Yi − m̂(0)(si)

}
︸ ︷︷ ︸

Ê[Y (0)|W=1]

where ρ̂ = 1/n
∑

iWi is the unconditional probability of treatment. With these scores,
an estimator for the ATE and ATT can be constructed by averaging them over the sample
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τ̂ j = 1
n

∑n
i=1 ξ

j
i for j ∈ {ATE, ATT}. The counterfactual potential outcome Ŷ (w) is con-

structed as a prediction from an outcome model m̂(w) plus an inverse-propensity weighted
residual term. This means that when the outcome model is correctly specified, the residuals
are noise and achieves consistency via outcome modelling, while if the propensity score is
correctly specified, the estimator achieves consistency via inverse propensity weighting and
the outcome models cancel out. This estimator is also semiparametrically efficient, which
implies that no regular estimator can improve upon its asymptotic risk (Hahn, 1998).

The presence of the propensity score in the denominator also immediately suggests that the
AIPW estimator relies heavily on overlap and well calibrated propensity scores. Its perfor-
mance can degrade quickly when propensity scores are extreme (J. D. Kang and Schafer,
2007) or under ‘mild’ misspecification, which gets magnified by the inversion of the propen-
sity score. We now turn to alternative estimators that sidestep the need to estimate and
invert the propensity score.

2.3.2. Regression Imputation Methods. The augmented IPW approach in the previous
section was developed for a completely general setting, where the propensity score is per-
forming the role of dimension-reduction by conveying how units are arranged in covariate
space S, such that one compares like-for-like units. When the dimension of covariates is
not too large (for example in the spatial setting), nearest-neighbours matching based on
location si and related methods provide an alternative route to estimate treatment effects
without the potentially fraught estimation of the propensity score.

A hybrid method with attractive properties in the spatial setting is the Bias-correctedMatch-
ing (BCM) or imputation estimator proposed by Abadie and G. W. Imbens (2011), which
combines matching and regression to impute missing potential outcomes. Matching estima-
tors impute Y (0) and Y (1) with a nearest-neighbour estimate of m1(si),m

0(si) respectively.
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The imputation estimator augments the matching estimator with a debiasing term that
regression-adjusts for differences in covariate values. Lin and Han (2022) show that this
approach can be generalized to a family of estimators involving linear-smoothers with a
n× n smoother matrix Ω with elements [ωi→j]i,j contains weights for units j matched with
unit i. Ω is learnt from covariates si for the treatment and control group.

Ỹ 0
i =


Yi if Wi = 0

1
M

∑
j:Wi=0 ωi←j (Yj + m̂0(si)− m̂0(Sj)) if Wi = 1

Ỹ 1
i =


1
M

∑
j:Wi=0 ωi←j (Yj + m̂1(si)− m̂1(Sj)) if Wi = 0

Yi if Wi = 1

In the case of 1:M nearest-neighbours matching with bias-correction (Abadie and G. W.
Imbens, 2011), ωi,j is 1/M for units in the matched set for unit i,Mi, which comprises
units from the opposite treatment group with similar values of si, and 0 everywhere else.
Lin andHan (2022) show that a wide set of methods including kernel regression, local linear
regression, nearest neighbours matching, and random forests can be expressed as in the
above linear smoother framework. This sidesteps the need to estimate the propensity score
e(si), and instead involves first fitting nonparametric regressions to estimate m̂(w) followed
by a multiplication with a smoother matrix Ω, which is easily constructed for matching
estimators but may otherwise require computation of distances (e.g. for kernel estimators).

Lin and Han (2022) show that imputationmethods also attain the semiparametric efficiency
bound, and as such are competitive with augmented IPW estimators without the potentially
error-magnifying step of propensity score inversion.

2.3.3. Balancing Weights for Geographic Treatments. The augmented inverse propen-
sity weighting estimator above requires smoothness in the outcome and propensity models,
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which may be infeasible in many settings where treatment assignment is ‘patch’ wherein
blocks of units get treated while others don’t, which is akin to a geographic regression dis-
continuity (Geo-RD) design. In such settings, the propensity score is zero or one in large
segments of the map, and therefore an alternate estimand and/or estimator are needed.

Focussing on the effect close to the boundary and invoking smoothness in the outcome
model typically motivates a geographic-RD approach (Keele and Titiunik, 2015). Most ap-
plied work3 transports ideas from uni-dimensional regression discontinuity designs where
treatment assignment is a deterministic function of a scalar ‘running variable’ x, and pro-
ceeds with estimation using local-linear regression. This approach has obvious shortcom-
ings in geographical settings for two reasons: (1) multivariate running variables potentially
induce improper comparisons across units that are quite far apart in space4, and (2) regres-
sion discontinuity designs rely on kernel-weighted comparisons within a narrow bandwidth
close to the discontinuity, which is challenging to calibrate in geographic settings since con-
ventional bandwidth-selection approaches (Calonico, Cattaneo, and Titiunik, 2014; G. Im-
bens and Kalyanaraman, 2012) select bandwidth to minimize mean-squared-error under
the assumption of independent and identically distributed observations close to the thresh-
old, which is implausible in the geographic setting thanks to spatial dependence. Further-
more, it is unclear why a single global bandwidth would be appropriate when treatment
and control regions are interspersed, and the outcome model is smooth and heteroskedastic
in space, as is often the case.

An alternative to the seemingly intractable problem of choosing a multivariate kernel and
optimal bandwidth for regression discontinuity type approaches is to rely on smoothness

3e.g. Dell (2010), who popularized the geographic regression discontinuity design in development economics
and advocates for global polynomials of location, which may have undesirable effects as illustrated by Gelman
and G. Imbens (2019)
4Applied researchers typically incorporate boundary-segment fixed-effects in their estimation strategies to
account for this, which restricts the regression comparison to either side of the boundary (Keele and Titiunik,
2015). However, this requires an ad-hoc partition of the boundary between treatment and control regions,
and further complicates inference.
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of the outcome model (which can be operationalized as a convex function class of a pre-
specified smoothness e.g. F : {∥∇2µ(S)∥ ≤ B)}, which is heuristically invoked for re-
gression discontinuity approaches), and using weights that directly minimise worst-case
regression error, as proposed by G. W. Imbens and Wager (2019) in the context of generic
regression discontinuity problems. For a given bound on the second-derivative of the out-
come model µ0 (which is typically invoked by researchers in geographical settings and is
closely related to our assumption of U−smoothness in the previous section), they propose
solving the following optimization problem

τ̂ =
n∑

i=1

γ̂iYi, γ̂ = argmin
γ


n∑

i=1

γ2i σ
2
i +

{
sup

∥∇2µ0(s)∥≤B

(
n∑

i=1

γiµ0(si)

)}2

:
n∑

i=1

γiWi = 1



This approach solves for theminimax-optimal linear estimator (i.e. minimax among all esti-
mators of the form τ̂ =

∑n
i=1 γ̂iYi conditional on X). This approach estimates the weighted

conditional average treatment effect with weights chosen to make the inference as precise
as possible5, which is closely related to the practice of propensity score trimming (Crump
et al., 2009) or overlap weighting (F. Li, Morgan, and Zaslavsky, 2018) to target feasible
estimands in the presence of limited overlap. The above approach can be implemented
using most modern optimization packages.

2.4. Inference. The partially linear and augmented inverse propensity weighting es-
timators proposed in the present paper are semiparametrically efficient, in that they are
5this is a constant-effects special case of the general formulation in G. W. Imbens and Wager (2019), where
the bias term incorporates both outcome models and is therefore

sup
µ0(·),µ1(·)

{
n∑

i=1

γµwi
(si)− (µ1(c)− µ0(c)) : |µ′′

w(s)| ≤ B ∀ w, s

}
The constant effects approximation yields a conditional-variance weighted average of heterogeneous effects,
as with our 2.3
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the most efficient regular estimators of their respective estimands and attain their respec-
tive efficiency bounds (Newey, 1994; Hahn, 1998). Indeed, precision considerations may
inform a researcher’s choice between them: the semiparametric efficiency bound for the
Average Treatment Effect (ATE) derived by Hahn (1998) takes the following form V =

V [τ(S)] + E
[

σ2
1

e(X)
+

σ2
0

(1−e(X))

]
. The second term divides by the pscore, and therefore can

blow up when overlap is poor.

Each can be characterised using its influence function (Chernozhukov, Chetverikov, Demirer,
et al., 2018)

ψPLR = (Y − m̂(S)− τ(W − ê(S)))(W − ê(S))

ψATE = m̂1(s) + W (Y − m̂1(s))
ê(s) − m̂0(s) + (1−W )(Y − m̂0(s))

1− ê(s) − τ

ψATT =
1

ρ̂

∑
WY − 1

ρ̂

∑[
Wm̂(0)(S)

]
+ (1−W )

ê(S)

1− ê(S)

{
Y − m̂(0)(S)

}
− W

ρ̂
τ

These functions are averaged for a point estimate (as in the previous subsection) and its
standard deviation

√
ψ̂i/n can be used to construct asymptotic confidence intervals. Infer-

ence on parameters involving first-step estimation of nuisance functions (such as m and e
above) is generally a challenging problem. Classical theory of semiparametric regression
suggests that we can ignore estimation error in the semiparametric steps (Robinson, 1988;
Andrews, 1994) under the implausibly strong assumption of the orthogonality between the
treatment and confounder (which is the reason we are performing covariate adjustment in
the first place). More recent work on two-step estimation for nuisance parameters typically
requires the nonparametric regressions to belong to restricted model classes (satisfying
Donsker conditions) such as sparse regularized regression (Belloni et al., 2017).

With arbitrarily flexible model classes, the asymptotic distribution of partially linear regres-
sion (PLM) or augmented IPW estimator (AIPW) suffers from ‘own-observation’ bias, which
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can be remedied by require cross-fitting, wherein the prediction of m̂0, m̂1, ê for observation
i is based on models that exclude observation i. This then permits √n consistent inference
on the treatment effects. However, this procedure may be data-inefficient in medium-scale
data settings, where withholding some fraction of the data considerably worsens model fit,
thereby increasing the bias in treatment effect estimation.

Chen, Syrgkanis, and Austern (2022) show that for a wide class of regression techniques
that satisfy the leave-out stability property (wherein replacement of any individual data
point with an independent copy from the same distribution does not change model fit sub-
stantially), √n consistency is feasible without sample splitting. Leave-out stability is con-
siderably weaker than the Donsker conditions required in the prior literature and therefore
encompasses a wide variety of nonparametric regressions, including regularized regres-
sions, generalized additive models (GAMs), and ensemble bagging estimators built via sub-
sampling without replacement (which is analysed by Chen, Syrgkanis, and Austern (2022)
as a leading case). This implies that for a variety of regression methods used to fit outcome
and propensity models for the partially linear or augmented IPW estimators described in
subsections 2.2, sample-splitting is not necessary for inference. For the PLM, residuals on
residuals regression with robust standard errors provides valid confidence intervals, while
for AIPW with GAMs, splines, or bagging estimators6, the nuisance models m(w)(·) and e(·)
can be fit using the entire dataset as with simpler parametric models.

An alternative approach is to use the nonparametric bootstrap. However, a naive imple-
mentation of the bootstrap is challenging in this setting, as any given bootstrap replication
with replacement might result in draws where a unit’s of its neighbours may have dropped
out completely, or repetitions of units’ neighbours such that the adjacency matrix is de-
generate. This leads the high-level Hadamard differentiability conditions that ensure the
validity of the Bootstrap to break down, heuristically in the same manner as with matching

6This class notably does not include random forests or neural networks, which do not satisfy the leave-out con-
dition required for Stochastic Equicontinuity to continue to hold without sample splitting (Chen, Syrgkanis,
and Austern, 2022).
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(Abadie and G. W. Imbens, 2008) and the LASSO (Camponovo, 2015). This means that
estimates aren’t defined for most bootstrap samples, and therefore a sampling distribution
cannot be constructed. Jackknife procedures, however, may continue to work as long as
the units have more than 1 neighbour.

The potential failure of the standard bootstrap motivates our recommended use of the
Bayesian ‘Random weighting’ bootstrap (D. B. Rubin, 1981; Mason and Newton, 1992;
Chamberlain and G. W. Imbens, 2003) for this problem. In this approach, instead of re-
sampling units with replacement, in each iteration, one draws an n−vector of Dirichlet
weights Wj ∼ Dirichlet(n; 1, . . . , 1) (exponential weights for each unit) and recomputes the
estimates. Assuming units are exchangeable conditional on location, this yields valid infer-
ence on target parameters. This approach is also closely related to the multiplier bootstrap
(Belloni et al., 2017; Chernozhukov, Chetverikov, Kato, et al., 2022).

3. Simulation Study

3.1. Setup. To benchmark the performance of the semiparametric estimators proposed
in the present paper against standard adjustment strategies, we conduct simulation stud-
ies with spatial confounding with varying degrees of smoothness and evaluate their per-
formance in estimating the known true estimates with both constant and heterogeneous
effects. In particular, we draw data on a 40× 40 = 1600 cell grid (regular lattice, with cells
as ‘districts’), where the unobserved confounder U is simulated from a Gaussian Process
with Matern covariance possessing the following covariance function

R(d; θ, ν) =
1

Γ(ν)2ν−1

(
2
√
νd

θ

)ν

Kν

(
2
√
νd

θ

)

whereK(·) is a modified Bessel function of the second kind, d is Euclidean distance between
two locations, θ is a range parameter, and most importantly for our purposes, ν > 0 is a
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u y w

True Effect = 2 ,   Naive estimate = 2.698

FIGURE 2. Confounder, Outcome, and Treatment Distribution

smoothness parameter that we vary to control the ‘measurability’ of U via S (A4 in 2.1).
Intuitively, the larger the value of ν, the easier it is for smoothingmethods to learn themodel
for U and partial out its effects. We also partition the map into groups of 8 × 8 ‘districts’
as ‘states’, which accommodates the standard practice of within-state comparisons. We
generate the treatment and outcome as

Wi ∼ Bernoulli(logit(U + ηi))) ; ηi ∼ N (0, 1)

Yi = τWi + U + εi ; εi ∼ N
(
0, σ2

ε

)

Since U is present in both the propensity score and outcome model, spatial confounding is
present in the DGP.

As a warm-up, we illustrate a single realisation of the DGP with ν = 5 in 2, and residuals
and estimates from various partialling out strategies in 3. We find that naive regression
substantially over-estimates the effect, as does parametric adjustment and state-fixed ef-
fects. The four semiparametric smoothing estimators, on the other hand, get the answer
almost exactly right.
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Parametric Adjustment estimate = 2.614

A B

Fixed Effects Estimate = 2.2

C D

NN Smooth Estimate = 1.999

E F

MRF Smooth Estimate = 2.012

G H

Kernel Smooth Estimate = 1.967

I J

RF Smooth estimate = 2.031

K L

FIGURE 3. Residualised data and estimates from various semiparametric re-
gressions
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(B) ν = 6: Sampling Distribution

FIGURE 4. Smooth Confounding: ν = 6

3.2. Results. Next, we compare the performance of the semiparametric estimators with
that of conventional approaches. We report simulation results in figs 4, 5, and 6 where a
single realisation of the DGP for ν = 6, 3, 0.5 is displayed on the left, and the corresponding
sampling distribution around the causal effect estimate of τ = 2 is reported on the right.

The traditional estimators under consideration are (1) naive linear regression (OLS) which
ignores spatial information entirely, (2) parametric spatial adjustment (Lon/Lat) which fits
linear and quadratic functions of location, State FEs (STFEs) which restricts to within-state
comparisons, and Spatial random effects (SRE) which follows the geo-statistics strategy of
fitting an outcome model with spatial random effects assumed to be orthogonal to the treat-
ment. The estimators proposed in the paper are local differencing (NN Resid), which resid-
ualises on first-degree neighbours’ treatment and outcome averages, GMRF residuals on
residuals (MRF Resid, and generalized random forest residuals on residuals (GRF Resid),
and minimax balancing (MM Bal) which implements the balancing weights algorithm.

We find that when the confounder is smooth (ν = 6 and 3), conventional estimation strate-
gies suffer from considerable bias, while the semiparametric estimators perform very well.
This is because the smoothing models are able to learn the representation of the confounder



SEMIPARAMETRIC SPATIAL COVARIATE ADJUSTMENT 25

u pscore

w y

(A) ν = 3: Single Realisation

2.0

2.4

2.8

OL
S

Lo
n/

La
t

ST
FE

s

SR
E

NN
 R

es
id

M
RF

 R
es

id

M
M

 B
al

GR
F 

Re
si

d

es
tim

at
e

(B) ν = 3: Sampling Distribution

FIGURE 5. Medium-Smooth Confounding: ν = 3
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(A) ν = 0.5: Single Realisation
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(B) ν = 0.5: Sampling Distribution

FIGURE 6. Noisy Confounding: ν = 3

using location data s. When the confounder is noisy, all estimators are biased, but semi-
parametric estimators are still considerably less biased than naive methods. When the con-
founder is very noisy (ν = 0.5), there is very little signal about the confounder in the spatial
location of an observation; using very narrow windows of comparison, as in spatial differ-
ences (where only adjacent units’ values are used to construct a prediction for a given unit’s
value) or minimax balancin performs best.
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4. Empirical Applications

Next, we implement the methods under consideration on two real data examples. We find
that when the unconfoundedness assumption is somewhat plausible based on the treatment
distribution, semiparametric estimators produce similar estimates to conventional paramet-
ric ones. On the other hand, when the treatment and outcome distributions are highly spa-
tially correlated, semiparametric estimators produce substantially attenuated estimates.

Mazumder (2018) studies whether historical civil rights protest activities in the 1960s is
affects contemporary racial attitudes among whites in the US. To do so, he argues that
protest activity at the county level (fig 7a) is exogenous conditional on geography, and
regresses county-level measures of contemporary racial resentment on a dummy for protest
presence, state fixed effects, and various geographic controls in his preferred specification
and finds that counties that experienced protest activity in the 1960s have lower levels of
contemporary racial resentment measures. We partial controls out linearly and estimate the
naive specification, parametric controls for location, state-FEs, spatial nearest-neighbours
residuals with and without FEs, and Markov random field residuals with and without FEs,
and report effect estimates in fig 7b. With the exception of the naive OLS estimate, which
is likely highly confounded, the rest of the estimators yield remarkably similar estimates
and intervals. This suggests that the findings in the paper are relatively robust to smooth
spatial confounding.

Dincecco et al. (2022) study the pre-colonial roots of local economic development in India.
They conjecture that higher levels of pre-colonial conflict between rival states increased
state-capacity in locations that experienced them (right panel of 8a, and this manifests
in higher levels of local level economic development measured by nighttime luminosity
(DMSP) (left panel of 8a. They also argue for unconfoundedness conditional on state fixed
effects. Their treatment is continuous with substantial heaping at zero (left panel of 8b), so
we discretise it to a binary measure at the median (which effectively codes the treatment
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(A) Protest activity distribution (figure from original paper)
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(B) Coefficient estimates

FIGURE 7. Treatment distribution (Top panel) and estimates (Bottom panel)
for Mazumder (2018)

as non-zero conflict). As with the previous example, we partial controls out linearly and
estimate the naive specification, parametric controls for location, state-FEs, spatial nearest-
neighbours residuals with and without FEs, and Markov random field residuals with and
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without FEs, and report effect estimates in fig 8a. In contrast to the previous example,
the treatment and outcome distribution is highly spatially correlated, and therefore spatial
smoothing substantially attenuates estimates. Smoothing using either nearest neighbours
or Markov random fields with state fixed effects attenuates the effect down to zero, with
the latter being precisely estimated (potentially because of longer trends in the outcome
data because it is a satellite measure).

5. Conclusion

In summary, we have proposed a class of semiparametric estimators for covariate adjust-
ment using spatial data under unconfoundedness given location and proximal designs.
These are motivated by semiparametric regression and double-machine learning methods,
which recognise that consistent causal estimation is possible by first residualising the treat-
ment and outcome on flexible functions of covariates, which in the spatial setting is best
performed by spatial smoothing methods. We provide conditions for nonparametric iden-
tification, outline several promising spatial regression strategies for the partial out step,
and discuss inference using the Bayesian bootstrap. Next, we illustrate the promising per-
formance of semiparametric adjustment relative to conventional strategies in a variety of
simulation studies, and show that for smooth to moderate confounding, partialling out es-
timators yield unbiased estimates, while when confounding is very noisy, they yield biased
estimates like all other strategies, but their bias is the smallest among all estimators con-
sidered. We conclude by illustrating the use of the estimators in two empirical examples,
where they yield similar and substantially attenuated effect estimates depending on the
plausibility of the ‘geographic natural experiment’.
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(A) Precolonial conflict (w) and luminosity (y) with state boundaries overlaid
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(B) Treatment distribution with median in red (used to discretize treatment) and coeffi-
cient estimates

FIGURE 8. Treatment distribution (Top panel) and estimates (Bottom panel)
for Dincecco et al. (2022)
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Appendix A. Proofs

A.1. Proof of Prop 2.1. By A4, U = g(S) is measurable, so is (S, U), which then en-
sures that there exists a measurable one-to-one mapping between S and S, U . This means
S and S, U induce the same σ− algebra and therefore give rise the same conditional distri-
bution.

Y (w) ⊥⊥ W |U, S =⇒ Y (w) ⊥⊥ W |S

□

A.2. Proof of Prop 2.2.

E
[
Y (w)

]
=

∫
E
[
Y (1)|U = u

]
dP (U)

=

∫
E
[
Y (1)|S = s

]
dP (S) by A4

=

∫
E
[
Y (1)|W = w, S = s

]
dP (S) by Prop 2.1

=

∫
E [Y |W = w, S = s] dP (S) by A1

where the last quantity involves observable data alone.

A.3. Proof of Prop 2.3. We first work with an oracle version of τ̂ PLR that uses true
nuisance functions m, e
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τ̂ ∗ =

∑n
i=1(Yi −m(si))(Wi − e(si))∑n

i=1 (Wi − e(si))
2 (A.1)

p→ E [(Y −m(s))(W − e(S))]

E [(w − e(S))]2
by LLN to Numerator, Denominator

(A.2)

=
E [((W − e(S))τ(S) + ε)(W − e(S))]

E [(w − e(S))]2
substitution of Y −m(S) = (W − e(S))τ(S) + ε

(A.3)

=
E [((W − e(S))τ(S) + ε)(W − e(S))]

E [e(S)(1− e(S))]
(A.4)

=
E [((W − e(S))2τ(S)] +

=0 by orthogonality of ε︷ ︸︸ ︷
E [ε(W − e(S))]

E [e(S)(1− e(S))]
(A.5)

= E
[

e(S)(1− e(S))

E [e(S)(1− e(S))]
τ(S)

]
(A.6)

Therefore the probability limit of τ̂ ∗ recovers a weighted average of strata-level effects τ(S)
with weights e(S)(1−e(S))

E[e(S)(1−e(S))] , which is nonnegative and integrates to one.

A.4. Details of Gaussian Markov Random Fields.

Defn A.1 (Gaussian Markov Random Field).

AGaussianMarkov Random Field is a spatial collection of random variables γ = {γ(s1), . . . γ(sn)}

for n units that can be specified in terms of a scaled precision γ ∼ N (0, τ 2Q−1).

γ is a a GMRF with respect to a labelled graph G = (V , E)with mean µ and precision matrix
Q > 0 iff its density has the form

π(γ) = (2π)−n/2 |Q|1/2 exp
(
−1

2
(γ − µ)⊤Q(γ − µ)

)

and Qij ̸= 0 ⇔ {i, j} ∈ E ∀i ̸= j
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The precision matrix Q is generally sparse, is typically configured to take a (Conditional)
Autoregressive (CAR) structure (BESAG, 1974), such that adjacent units’ random effects
are correlated.
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